By Products Critical Raw Materials Mineral Processing Technology Mining Raw Materials Sustainable Ionometallurgy

Discover The Work ION4RAW: Up-scaling and demo validation

The ION4RAW project funded by the European Union is investigating innovative recovery processes of metals from different kinds of minerals. The metals of interest are so called “critical raw materials” (CRM) which are globally uneven distributed and mostly imported into the EU. To exploit deposits located within the EU and recover those metals form already processed minerals the ION4RAW project uses deep eutectic solvents (DES) to leach the metals out of ores and minerals. DES are new and environmentally friendly leaching agents made up of organic compounds in contrast to classic water-based leaching agents like acids and bases.

During work package 6 of the ION4RAW project partners from Germany, Italy, Norway and Spain teamed up to transfer the ION4RAW process established in the lab scale to be performed in a pilot plant build, operated and validated at tecnalia research & innovation facilities in Spain. TU Bergakademie Freiberg, Germany, investigated the up-scaling of the process to the medium scale prior to setting up the pilot plant which will be able to process up to 100 L. Working in a jacketed glass reactor of 15 L, displayed in figure 1, suited for that kind of leaching experiments the researchers were able validate the parameters for the process and maintain a high recovery rate of the metals.

Figure 1: Jacketed glass reactor with DES left and during the metal leaching right.

SINTEF in Norway analysed the deposition of the leached metals in solution by applying electrical current for the recovery of pure metals. The Italian partners of RINA Consulting Centro Sviluppo Materiali will evaluate the metals produced during the process in regard to purity and use in commercial products. In the end of the ION4RAW process and products will be validated and evaluated by IDENER in Spain.

 

 

Researchers found out that the ION4RAW process can be carried out in a higher processing rate suitable to be performed in early industry applications. Metals of interest like antimony, bismuth or tellurium all of which are important for high-technology products are recovered in high rates from the starting material.

The greatest challenge faced during the up-scaling process was to dissipate the heat produced during leaching. This challenge arises from the different ratios in which volume and surface area change during scale-up. The processed amount of material is in contact with a much lower surface area in large equipment in respect to small lab scale experiments. Therefore, the heat produced can´t be dissipated in such good ways which makes utilisation of sophisticated cooling equipment and agents essential for successful metal recovery.

In the future the ION4RAW process will be applied to other minerals and secondary raw materials like slags from metal production to increase possible application fields of this innovative process. The process should be further optimised and adapted that a broad variety of metals can be recovered and used for production which are currently not recovered for different kinds of mineral deposits and are lost to tailings or landfill. In this way the ION4RAW project will contribute to more environmentally friendly and holistic recovery of metals that are of high importance for industries, consumers and the society in general alike.

In order to develop and evaluate the ION4RAW process on samples from different kind of resources typology and respective mineralogy, five ore deposits were selected and sampled with help of the mining operators: Cobre Las Cruces and El Valle Boinás ore deposits in Spain, Cononish gold mine which is the only active gold mine in Scotland, Cerro Lindo and El Porvenir ore deposits in Peru. Between 300 kg and 7 tons of each bulk ore, totalizing 22.7 tons of material, were sampled during the first year of the project and distributed to ION4RAW partners. Sub-sampling and pre-treatment of the samples for the lab analyses are described in a public report[3].

Author: Ben Ebersbach

Mineral Processing Technology

ION4RAW presented at the Reactive Metals Workshop at MIT

Since 2006, a workshop on reactive metals processing, most often called Reactive Metals Workshop, or RMW, has been organized yearly by collaboration between universities in the US, mainly Massachusetts Institute of Technology (MIT), and universities in Japan, primarily the Institute of Industrial Science (IIS) at the University of Tokyo. After a break due to the pandemic, many signed up for the first workshop since 2020, the 16th ever RMW, and about 60 participants accepted the invitation to attend and found their way to MIT March 24-25, 2023.

During the two-day workshop, eight invited speakers from universities in Japan, USA, Norway and Iceland took to the floor on subjects like novel type batteries, metal production, processing and recycling. Lively discussions on the subjects continued between all participants after each presentation, in the breaks, and during the poster session. In attendance were mainly researchers, professors and graduate students from the scientific community, while some with an industrial background also attended.

Picture 1. Attendes at RMW16.

main event during RMW is the poster session. During this time, everyone attending is given a chance to contribute to the event by presenting their work. First, everyone is given the opportunity to have a short 3-minute pitch in front of everyone, to present their research and give a reason for continued elaboration and discussion during the active poster session. During the poster session everyone, also the attendees presenting posters, are allowed to walk around and speak to each other regarding the research presented. A total of 18 posters were presented at RMW16.

ION4RAW was presented in the workshop with participation from SINTEF. SINTEF has during the project worked with electrochemical recovery of the targeted metals through electrochemical deposition, and participated with a poster titled: “Electrochemical Recovery of Au and Ag from Ore Deposits using Innovative Deep Eutectic Solvent Ionic Liquids”.

Picture 2. Gøril Jahrsengene(SINTEF) presentation

Picture 3. Gøril (SINTEF) in front of her poster.

The poster covered results regarding electrochemical characterization of the suggested electrochemical systems focusing on targeted elements, Au and Ag, as well Cu and Fe that is also going to be present in the electrolyte in the ION4RAW process. During the 3-minute pitch, SINTEF also showed a picture of a wire completely covered in what visually appeared to be gold, obtained after an experiment using an electrolyte where mine waste had been leached. Ending the pitch with an open question regarding this deposit: “Is it really gold and were we able to recover it electrochemically?”, made sure many of the participants stopped at the poster afterwards, to discuss the results, the ION4RAW process, and general use of DES in metal recovery.

Besides the main event of the poster session, the workshop is viewed as an excellent opportunity to network. Allowing for frequent and informal breaks throughout both days, an evening banquet with pre-drinks networking in the evening, and a lab tour in the MIT labs and buildings (ending in the famous library dome), it was a great opportunity to present the ION4RAW project, results from the electrochemical recovery task, and network on this and possible new projects.

Picture 4. Recovered Au and Ag.

Mineral Processing Technology

TARANTULA Clustering Event: Conclusions on Social License to Operate in the Mining and Life Cycle Assessment Methodologies for (re)processing of low-grade primary and secondary resources

The mining sector is unquestionably crucial for Europe’s economic growth and the development of various industries, including green and digital technologies. However, as emphasised at the end of the event by Prof. Juan Maria Menendez Aguado from University de Oviedo Mining and Minerals Engineering, mining activities are often associated with environmental and social challenges, leading to conflicts with local communities, and potentially jeopardising the Social License to Operate (SLO). Despite Europe’s high environmental standards for raw material production, the harvesting of primary and secondary resources of critical raw materials (CRMs) is imminent and requires regaining the trust of European citizens and policymakers.

Insights and Highlights from the Panel Discussions and Roundtables

On 19 April, the International Centre for Advanced Materials and Raw Materials (ICAMCyl) organised a cluster event on behalf of the TARANTULA EU-funded project which is expected to reach its final stages in November 2023. The workshop brought together mining projects and companies, and included two panel discussions and a round table that highlighted various aspects of SLO methodologies and Life Cycle Assessment (LCA) in the mining sector. The event took a holistic approach to modern mining processes, providing insights on more than just technical aspects relevant to SLO and LCA. Discussions emphasised the importance of implementing sustainable and responsible mining practices that balance economic, social, and environmental concerns. Additionally, there was emphasis on the importance of engaging with local communities and governments to build trust and support for mining activities.

ION4RAW, represented by Mathilde Legay (LGI), participated in the roundtable discussing how EU-funded projects are tackling the SLO aspect during the development phase, but also in the panel discussion focusing on the LCA methodology and the impact categories, such as climate change, metal depletion, freshwater ecotoxicity and eutrophication, and human toxicity.

The Technological Park of Leon (ESP) hosted the event, which provided an opportune context to share the results of a study conducted within one of ION4RAW’s sister-project’s – BIORECOVER. The study carried out by ENSO and LGI revealed the social perception of the mining sector in Spain, France and Greece and the need to educate people about the importance of mining activities. Despite certain concerns, around 50% of the interviewed participants were in favour of opening more mines in Spain to reduce the global environmental impacts, improve working conditions for miners, and create more job opportunities for various regions. The study was complemented by a detailed presentation of the public awareness campaign run by ION4RAW, which aims to communicate about the use of raw materials in daily life and showcase the essential usage of CRMs in key sectors. LGI initiated an  awareness campaign, including impactful attractive visuals, animated videos, social media cards, followed by quizzes and online contests, which was well-received by the European Commission’s reviewers, but also by the project’s online communities.

During the latter part of the event, ION4RAW presented the initial findings and hypotheses derived from applying the LCA methodology in the project. The focus was on assessing the environmental impact of using Deep Eutectic Solvents (DES) in ION4RAW, with preliminary results indicating that the synthesis of DES and the concentration of additives are associated with the climate change and freshwater ecotoxicity impacts.

The EU projects TARANTULA, ION4RAW, MADITRACE, S34I and PASSENGER presented their findings, which were complemented by  two presentations from leading mining companies in Europe – operating the Penouta Sn, Ta and Nb mine (ESP), respectively the Barruecopardo Mine (ESP). The companies presented key aspects that contribute to a positive SLO, emphasizing the importance of restoring the environment, improving the economic situation of the mining area and the surrounding areas, creating employment opportunities, and providing training to local communities.

The Workshop in Figures

The cluster event organised by the TARANTULA project attracted a diverse range of stakeholders, including research institutions (62%), mining and manufacturing companies (23.81%), consultancy firms (9.52%), and trade unions (4.76%). The event had an audience of nearly 25 participants from different countries, with most attendees being from Spain, followed by Belgium, France, Italy, Germany, and Austria.

In conclusion, the TARANTULA clustering event was a valuable platform for sharing insights and experiences, and it highlighted the essential role of the mining sector in the development of various industries. It is crucial to ensure that mining activities are carried out sustainably and with the support of local communities and the public.

Mineral Processing Technology

Recovering critical raw materials

Minerals such as antimony, germanium, and indium play an integral role in many modern technologies and devices. These critical raw materials are essential components in everything from smartphones to solar panels, and demand for them is only increasing. However, traditional mining and extraction methods can have significant environmental impacts, making it increasingly important to develop sustainable and responsible approaches to raw materials production.

This is where the ION4RAW project comes in. The project is focused on developing new, more sustainable methods to recover critical raw materials and metals from mining sites. Led by coordinator Maria Tripiana, the team is working to identify and optimize environmentally-friendly approaches that minimize waste and reduce the use of harmful chemicals.

Excitingly, the ION4RAW project has just been featured in the latest issue of the EU Research magazine. Readers can learn more about the project’s innovative approach to raw materials production by checking out pages 52, 53, and 80 of the magazine.

Have a look at our piece in the magazine below!